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Bifurcations of homoclinic orbits in bimodal maps
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We discuss the bifurcation structure of homoclinic orbits in bimodal one dimensional maps. The
universal structure of these bifurcations with singular bifurcation points and the web of bifurca-
tion lines through the parameter space are described. The bifurcations depend on two parameters
(codimension-2 bifurcations). We find the bifurcation lines exactly in a symbolic dynamics param-
eter plane and numerically in the parameter planes of a polynomial map and a piecewise linear

map.
PACS number(s): 05.45.+b

The aim of this Brief Report is to describe the struc-
ture of the bifurcations of some nonperiodic orbits in a
bimodal map. A more complete discussion of the bifur-
cations of orbits in bimodal, trimodal, and four-modal
maps will be given in Ref. [1] (see also Ref. [2]). Bifurca-
tions of periodic orbits in bimodal maps are investigated
by several authors [3-7].

The bimodal map is a one dimensional continuous map
Tey1 = f(x¢;a,b), where the function f(z) has one max-
imum point f(z.,) and one minimum point f(z.,) and
two parameters (a,b) such that the two extremum points
can be changed independently. We call z., and z., the
critical points of the map. If ., < z., we denote the
map + — + and if ., > z., we denote it — + —. In
this Brief Report we choose only to study the map + —+
while the — + — map will be described elsewhere [1].

Periodic orbits are solutions of the equation

9(z) = f™(2) —z =0.

The solution of g(z) = 0 is the topic of singularity the-

ory (8] and the bifurcation of periodic orbits in the bi-

modal maps have codimension-2 structure, i.e., a univer-

sal form in a two-parameter plane. Nonperiodic orbits

are solutions of a slightly different equation and yield a

different bifurcation picture also with codimension-2.
We choose the polynomial map

T4l = .’E? —axs + b (1)

as an example of a smooth bimodal map, and as a con-
tinuous piecewise linear map we choose

2z, +a+b+2 if z, < -1
b—azx, if -1<z:<1 (2)
2:1:t—a.+b-21fa:¢>1

Tt+1 =

These two very different bimodal maps illustrate struc-
tures that are common for all bimodal maps and the
changes of the structure when the smoothness of f(z)
is different.

We define symbolic dynamics [2,7,9-12] for the bi-
modal map s, € {0,1,2}
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0 if z, <=z,
sg=¢ 1if z,, <z, <z, (3)
2 if z; > Te, -
An orbit is identified by an infinite symbol

string § = ...8_28_180%182... and the points
..., T_2,T_1,T0,T1,T2,.-. in an unstable orbit are
uniquely defined by the symbol string. A point z; of
an orbit S has one symbolic future s;18;428¢43... and
one symbolic past ... s;_28:_18:. Since the bimodal map
is not uniquely invertible, a point z; can belong to dif-
ferent orbits and have different symbolic pasts, but the
point always has one unique symbolic future. We use
the convention 3753..-8, = (8182...8,)™ to denote an
infinite repetition of a finite length symbol string. We
also use the notation ...sp,_1{5n, s, }Sn+1 ... for the two
symbol strings ...8,_15,8n4+1-.-and ...Sp_180Snt1 ...

It is useful to define the following variable for the
+ — + bimodal map, following ideas of Milnor and
Thurston [2,11,13]:

w; = 8y,

. 1 if sy = Oor2
PL=1-1if s, =1,

St if t—1 = 1
We = (2-3:) if gt—l = —1, (4)
Pt-1 if 8t = 0or2
Pe = —pi—1 if s = 1,
T(zo) = Owiwows...= Z;,

~
l

1

where the base 3 real number 0 < 7 < 1 is called the
symbolic value. The kneading values are defined as

K1 =7(Zc,), K2 =7(Zc,)- (5)

Let «;, t € {...,—2,-1,0,1,2,...} be the points of an
orbit specified by the symbol string S and let the maxi-
mum and minimum values of the symbolic value be given
by

TRex(S) = mta.XT(:z:t) with ; < z,,
TRIn(G) = mtin'r(a:t) with =, > z,. (6)

The orbit S is admissible if and only if
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K1 > TRSX | gy < TR (7

The values k; and k2 depend on the parameters a and
b and we denote them the symbolic parameters of the
bimodal map and the plane (k;, k2) the symbolic param-
eter plane. An orbit S is admissible in a rectangle in
the (%1, K2) parameter plane. At the symbolic parameter
values kK, = 1.0 and 2 = 0.0 all orbits in the map exists.
With these tools we can analyze the bifurcations of all
orbits in the bimodal map.

For simplicity we will here discuss only one family of
homoclinic orbits. Other nonperiodic orbits will have
similar structures and these orbits can be analyzed in
the same way.

A homoclinic orbit in a bimodal map has a symbolic
description

SA,B = ZBZ,

where A and B are finite symbol strings. We choose the
simplest case with A =1

S1.B = 1B1, (8)

with B = byby...b,.

The bifurcation lines of S; p with a few different
strings B are drawn in the symbolic parameter plane
(k1,K2) in Fig. 1. The two homoclinic orbits which ex-
ist for the largest area in the parameter plane are 121
and 12121 (in the notation introduced above 1{1,2}121),
which both have 7** = 7(21) = 0.21 = 5/6 and
T5in = 7(12I) = 0.101 = 7/18 yielding the bifurcation
lines k2 = 0.21 and k2 = 0.101.

The homoclinic orbit is drawn in Fig. 2(a) with ¢ =
2.00794 and b = 0.274, which are parameters close to
the singular point in the parameter plane where both
the critical points z., and z., belong to the homoclinic
orbit. In contrast to the bifurcation of periodic orbits it is
important to notice which critical point is first and which
is last along the orbit at the singular parameter point. In
Fig. 2(a) the orbit is first close to z., then close to z, .
There are four orbits bifurcating at this singular point
with the symbolic description

1{1,2}{0,1}21. (9)

The structure of the bifurcation lines from the singularity
depends on whether the line is associated with the first
or the last critical point. The last critical point that the

KZ Kz
0.10T 4 1{1,2}121 0.10T 4 1{1,2}121
_ _ 1(0.1)2{1.2)021
0027 4 1{1,2}021 0027 4 1{1,2}021
2z |z
i) L o
T(1,2){0,1)2T 3| |= <
= S S
= =1 =4
0.21 Xy 0.2T 0.2202T Ky
0.2120T
(a) (b)

FIG. 1. Bifurcation lines for homoclinic orbits in the sym-
bolic parameter plane.
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FIG. 2. Homoclinic orbits in the polynomial map (1)
close to a singular bifurcation point: (a) 1{1,2}{0,1}2T for
a = 2.00794 and b = 0.274 and (b) 1{0,1}2{1,2}021 for
a = 2.34865 and b = 0.26552.

orbit visits yields one bifurcation line for all four orbits.
In this example the line is k; = 0.21 in the symbolic
parameter space. The critical point first visited by the
orbit yields two different bifurcation lines: x; = 0.101
for the orbits 1{1,2}121 and x, = 0.021 = 5/18 for the
two orbits 1{1,2}021. These three lines are drawn in
the symbolic parameter plane in Fig. 1(a). The two k,
lines hit the x; line at two different points, but these two
points can be identified with one singular point because
the line segment x; = 0.21, 0.021 < Kk, < 0.101 is not
accessible.

The bifurcation lines in Fig. 1(a) are drawn in the (a, b)
plane in Fig. 3(a) for the polynomial map (1). The main

Te1,2)121

0.35

1¢0,13211,2}021

0.30 - T(1,2)021

0.25 —

0.20 —

0.15 —

FIG. 3. Bifurcation lines in the parameter plane for the
polynomial map (1).
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difference from the symbolic parameter plane is that the
two bifurcation lines corresponding to the symbolic pa-
rameter lines k2 = 0.021 and k2 = 0.101 hit the line
corresponding to k; = 0.21 approximately like the two
branches of a parabola hit tangentially the end points
of a straight line. The area in the parameter space that
gives a specific solution close to a singularity is often
called a cusp because of the shape. In this case we have
two different cusps: one which is a narrow sharp cusp and
one which does not look like a cusp at all. The boundary
lines of the second cusp have a common first derivative at
the singularity, but higher derivatives differ; the curve is
C"! but not C2. We believe that this is generic for smooth
bimodal maps with f”(z.,) # 0. A simple way of under-
standing the cusp structures is to look at the solution of
the equation

fo(fa(z)) =0, (10)

where f,(z) and fp(z) are functions with one extremum
value each. Choosing parabolas f,(z) = z? — a and
fo(z) = 2 — b gives

(z2—a)*-b=0,

which has four real solutions for a > 0and 0 < b < a2 (a
sharp cusp) and which yields at least two real solutions
in the area bounded by b > 0 when a > 0 and b > a2
when a < 0 (a smooth cusp).

The bifurcation lines for the piecewise linear map are
drawn in Fig. 4(a). Here the three bifurcation lines sim-
ply hit the singular point with different angles giving two
cusps where the derivatives of the border lines are differ-
ent at the singularity. The bifurcation structure of the
piecewise linear map is related to the solution of (10)
when the functions f, and f; are piecewise linear. Choos-
ing f,(x) = |z| — a and fu(z) = |z| — b gives

lle| —al —b =0

(a)

1(1,2)121

1(1,2)021

1(1,2)(0,1)21

TzT(Z 1)L

FIG. 4. Bifurcation lines in the parameter plane for the
piecewise linear map (2).

and this equation has four real solutions for 0 < b < a
and it has at least two real solutions in the area bounded
by b > 0 when @ > 0 and b > —a when a < 0. These are
two cusps of the same type as the cusps in Fig. 4(a).

Equation (10) captures the essence of a bifurcation
where an orbit is born when this orbit does not have any
point close to the critical points in an arbitrarily long
future after visiting the two critical points once. The
function fy(fo(z)) yields the same structure as obtained
locally around an orbit visiting in any order: two times
close to independent extremum points and a finite num-
ber of times at points where the function is monotoni-
cally increasing or decreasing. An orbit that is not close
to any critical point (e.g., an unstable periodic orbit) can
be considered to have constant points close to the singu-
larity and we choose a constant point in this orbit to be
zero. The bifurcation of periodic orbits is different and
is related to the solutions of an equation such as

fo(fa(x)) = =,

which gives different structures. The borderlines of a
typical cusp for periodic orbits separates proportional to
the distance from the cusp to the power 3/2 for smooth
maps [8] compared with the narrower cusp of Eq. (10)
with smooth functions where the distance between the
borderlines increases as the distance from the singularity
to the power 2.

So far we have found that the structure of the singular
point is different for periodic orbits and for homoclinic
orbits. A further difference is that two singular bifurca-
tion points for periodic orbits are always separated by a
finite distance both in the symbolic parameter plane and
in the parameter plane of a smooth map, while singular
bifurcation points of homoclinic orbits may be arbitrarily
close and may have bifurcation lines in common.

In Fig. 1(b) the bifurcation lines for the four homoclinic
orbits

1{0,1}2{1,2}021 (11)

are added in the symbolic parameter plane. These four
orbits have the bifurcation line xk; = 0.021 in common
with the orbits 1{1,2}021, but have different x; bifur-
cation lines: k; = 0.21201 = 139/162 for the two orbits
1{0,1}21021 and x; = 0.22021 = 149/162 for the two
orbits 1{0,1}22021. This yields a singular bifurcation
point with three bifurcation lines, but with x; and x;
switched compared to the structure of the bifurcation
discussed above, because at this singular point the orbit
(11) visits the point z., before it visits z.,. The homo-
clinic orbit close to the singular parameter value of the
polynomial map is drawn in Fig. 2(b) with a = 2.34865
and b = 0.26552.

The structure of the bifurcation lines are drawn in
the (a,b) plane of the polynomial map (1) in Fig. 3(b)
and the structure of the singularity is the same as for
the orbits (9). The bifurcation lines for the piecewise
linear map are drawn in Fig. 4(b). This latter singu-
lar point is a finite distance away from the singularity
discussed above, but choosing, for example, the homo-
clinic orbits 1{0,1}21(2*){1,2}021, these will yield sin-
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gular bifurcation points converging to the singular bifur-
cation point of the orbit 1{1,2}{0, 1§2T since these have
k1 = 0.2127*t1)207 or k; = 0.21(27)2021, which in the
limit » — oo is k3 = 0.21. These singular points will be
arbitrarily close also in the (a, b) plane of the polynomial
map and the piecewise linear map. The set of all singular
bifurcation points on the line k; = 0.021 is a complicated
set of the Cantor type. Since each new bifurcation line in
the Cantor set of lines again has new singular points in a
Cantor set, etc., this yields a complicated web of crossing
bifurcation lines through the parameter plane connecting
the homoclinic orbits of the form 1B1.

If the homo- or hetroclinic orbit ends in a periodic orbit
which is created in a tangent bifurcation, for example, a
period-3 orbit, then the cusp structure described above
takes place at the tangent bifurcation line in a tail of the
swallowtail of the stable orbit.

The parameter values when the critical point maps into
an unstable orbit in the unimodal map is called Misi-
urewicz point and corresponds to the bifurcation lines
described here. Some of these bifurcations correspond

to major changes in the structure of the attractor, such
as band merging bifurcations and crisis bifurcations. To
understand how the chaotic attractor changes with the
parameters these bifurcation lines have to be described.

In summary we have studied one example of the bifur-
cation structure for homoclinic orbits in bimodal maps.
We find singular bifurcation points with cusps connected
in a web of bifurcation lines through the parameter space.
This is generic for all bimodal maps while the exact shape
of the cusp depends on the smoothness of the function at
the critical points. The bifurcation lines are found in a
simple and exact way in the symbolic parameter space.
The bifurcation structure for the homoclinic bifurcations
in the two-dimensional Hénon map is similar, but not
identical to what is obtained here and this is discussed
in [14].
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